AP Calculus BC Chapter 12 (Anton) Review

The General Equation for a Conic Section: $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$

Rotate Axes:

$$\cot 2\theta = \frac{A - C}{B}$$

$$x = x' \cos \theta - y' \sin \theta$$

$$y = x' \sin \theta + y' \cos \theta$$

The type of section can be found from the sign of the <u>Discriminant</u>: $B^2 - 4AC$

If <i>B</i> ² - 4 <i>AC</i> is	then the curve is a
< 0	ellipse, circle, point or no curve.
= 0	parabola, 2 parallel lines, 1 line or no curve.
> 0	hyperbola or 2 intersecting lines.

The Conic Sections. For any of the below with a center/vertex (h, k) instead of (0, 0), replace each \underline{x} term with (x-h) and each \underline{y} term with (y-k).

	Circle	Ellipse $(a > b)$	Parabola	Hyperbola
Equation (horiz. vertex):	$x^2 + y^2 = r^2$	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	$y^2 = 4px$	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$
Equations of Asymptotes:				$y = \pm \frac{b}{a}x$
Equation (vert. vertex):	$x^2 + y^2 = r^2$	$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$	$x^2 = 4py$	$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$
Equations of Asymptotes:				$y = \pm \frac{a}{b}x$
Variables:	r = circle radius	<pre>a = major radius (= 1/2 length major axis) b = minor radius (= 1/2 length minor axis) c = distance center to focus</pre>	from vertex to focus (or	 a = 1/2 length major axis b = 1/2 length minor axis c = distance center to focus
Eccentricity:	0	$\frac{c}{a}$		$\frac{c}{a}$
Relation to Focus:		$c^2 = a^2 - b^2$		$c^2 = a^2 + b^2$
Definition: is the locus of all points which meet the condition	distance to the origin is constant	sum of distances to each focus is constant		difference between distances to each foci is constant

AP Calculus BC Chapter 12 (Anton) Review

(b)
$$x^2 = 4py, p < 0$$

(c)
$$y^2 = 4px, p > 0$$

(d)
$$y^2 = 4px$$
, $p < 0$

FIGURE 8
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

FIGURE 12 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

FIGURE 9 $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1, \ a \ge b$

FIGURE 13 $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$